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Abstract

There is wide evidence that financial time series are the outcome of the superposi-
tion of processes with heterogeneous frequencies. This is true, in particular, for market
return. Indeed, log market return can be decomposed into uncorrelated components
that explain the reaction to shocks with different persistence. The instrument that al-
lows us to do so is the Extended Wold Decomposition of Ortu, Severino, Tamoni, and
Tebaldi (2017). In this paper, we construct portfolios of these components in order to
maximize the utility of an agent with a fixed investment horizon. In particular, we build
upon Campbell and Viceira (1999) solution of the optimal consumption-investment
problem with Epstein-Zin utility, using a rebalancing interval of 2J periods. It turns
out that the optimal asset allocation involves all the persistent components of market
log return up to scale J . Such components play a fundamental role in characterizing
both the myopic and the intertemporal hedging demand. Moreover, the optimal policy
prescribes an increasing allocation on more persistent securities when the investor’s
relative risk aversion rises. Finally, portfolio reallocation every 2J periods is consistent
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with rational inattention. Indeed, observing assets value is costly and transaction costs
make occasional rebalancing optimal.

JEL classification: G11, C32, C61.
Keywords: optimal portfolio, Epstein-Zin preferences, multiple horizons, persistence of
returns, shocks heterogeneity.

1 Motivations

Economic phenomena are complex objects of study. In fact, every variable is the result of
the aggregation of a multiplicity of factors that occur often unexpectedly and last for an
undetermined amount of time. The superposition of these factors lets cyclicalities - as well
as other meaningful patterns - arise in economic and financial time series. These issues
motivated the thriving literature of business cycles detection by spectral analysis of the
frequency domain. Remarkable examples of the filtering approach are provided by Stock
and Watson (1999) and Baxter and King (1999).

In the realm of finance, the coexistence of sources of randomness with various durations
is associated with diverse trading horizons. Investors with specific timelines require com-
pensation from the exposures to shocks with precise frequencies. For example, long-term
traders are much more concerned of political cycles than short-term investors, who are
likely to be more keen on temporary mispricings. The intuition of risk premia anchored
to different horizons is coherent with the Heterogeneous Market Hypothesis of Müller, Da-
corogna, Davé, Olsen, Pictet, and von Weizsäcker (1997), which turned out to be fruitful
for the analysis of stochastic volatility. Moreover, estimating the proper duration of shocks
is crucial for long-run implications on economic dynamics, as described by Bansal and
Yaron (2004) and Ortu, Tamoni, and Tebaldi (2013), among others.

From a practical perspective, exploiting different frequencies of asset returns has proven
to be profitable for investment. This evidence comes from portfolio strategies that rely,
for instance, on FED meetings calendar. Indeed, building on the result of Lucca and
Moench (2015), Cieslak, Morse, and Vissing-Jorgensen (2018) show that market returns
display biweekly cycles around FOMC meetings, which occur every six weeks. Going long
(short) on the market index according to even (odd) weeks outperformed the buy-and-
hold strategy by 2, 4 times from 1994 to 2016. Despite this convincing empirical evidence,
portfolio theory is essentially silent on investment strategies that could optimally include
the compensation to shocks with heterogeneous durations. Some tentative formalizations
of multifrequency trading are provided very recently by Chaudhuri and Lo (2016) and
Crouzet, Dew-Becker, and Nathanson (2017).

On the other hand, the financial literature on intertemporal asset pricing theory is vast.
Among the fundamental works on multiperiod asset allocation we can quote, for instance,
Brennan, Schwartz, and Lagnado (1997) and Barberis (2000). In addition, most of achieve-
ments about optimal portfolio policies in the presence of stochastic returns flowed into

2



Campbell (1993) and Campbell and Viceira (1999), who solved the optimal consumption-
portfolio problem of an Epstein-Zin type investor by assuming autoregressive returns. Dif-
ferently from one-period settings, the intertemporal dimension of the problem affects the
optimal capital allocation, providing the distinction between myopic demand and hedging
demand. The latter is particularly important for medium-term traders because it incorpo-
rates the agent’s reaction to expected future return streams.

More generally, Campbell, Chan, and Viceira (2003) provide the methodology to im-
plement a multivariate strategic asset allocation. However, in these models the investor is
not equipped with the necessary tools to fully exploit the multi-horizon nature of market
returns.

In this paper we build a portfolio optimization framework in which the agent can
optimally trade assets that are associated with the heterogeneous levels of persistence of
market returns. Specifically, we implement a persistence-based asset allocation in a special
Campbell, Chan, and Viceira (2003) setting.

The starting point of our construction is the decomposition of market returns (in ex-
cess of a risk-free rate) into the sum of uncorrelated components associated with specific
investment horizons. To achieve this goal, we apply the Extended Wold Decomposition,
or persistence-based decomposition, of Ortu, Severino, Tamoni, and Tebaldi (2017) to the
stationary time series of log excess returns. In addition, we assume that such components
correspond to the returns of risky securities traded in the market. An Epstein-Zin type
investor, then, maximizes her utility by optimally trading these assets. We finally illustrate
the different implications of persistence heterogeneity on myopic and hedging demands.

Our market components are reminiscent of factors employed in Capital Asset Pricing
Models. Since the early work of Ross (1976), factor investing has been pervasive in empir-
ical asset pricing. Original portfolios of Fama and French (1992) three factors, based on
size and value, have been enhanced with Carhart (1997) momentum factor and with a tax-
onomy of other stylized portfolios, as quality factors of Fama and French (2015) and Hou,
Xue, and Zhang (2015) and lucky factors by Harvey and Liu (2017). Moreover, practition-
ers successfully contributed to this approach out of the academic world: see, for example,
the overviews by Bender, Briand, Melas, and Subramanian (2013) and Podkaminer (2013).
Nevertheless, differently from factors known in the financial literature, our market compo-
nents involve specific investment horizons and capture shocks with frequencies associated
with the horizon under consideration, building a bridge between multiperiod asset alloca-
tion and the filtering approach.

Finally, our investor is supposed to allocate her wealth every 2J periods, where J is
a reference level of persistence. The agent’s choice of rebalancing her portfolio after 2J

periods of inaction is compatible with the theory of optimal inattention. Indeed, observing
the value of the investment portfolio may be costly and transaction costs may induce
infrequent adjustments. See, for instance, Abel, Eberly, and Panageas (2013) and Peng
and Xiong (2006).
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1.1 Summary of results

Given a zero-mean weakly stationary time series x = {xt}t, the Classical Wold Decompo-
sition allows us to write any xt as an infinite sum of uncorrelated innovations:

xt =

+∞∑
k=0

αhεt−h,

where ε = {εt}t is a unit variance white noise and αh are the so-called impulse response
functions. The Extended Wold Decomposition introduced by Ortu, Severino, Tamoni,

and Tebaldi (2017), instead, decomposes xt into uncorrelated persistent components x
(j)
t

associated with specific time scales j such that

xt =
+∞∑
j=1

x
(j)
t , x

(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j
.

Here each detail process ε(j) =
{
ε

(j)
t

}
t

is an MA(2j − 1) with respect to the fundamental

innovations of x and β
(j)
k is the multiscale impulse response associated with scale j and

time-shift k2j . Moreover, fixed a maximum scale J , it is possible to write the orthogonal
decomposition

xt =
J∑
j=1

x
(j)
t +m

(J)
t ,

where m
(J)
t constitutes a residual component. With a small abuse of notation we denote

x
(J+1)
t = m

(J)
t .

The derivation of the Extended Wold Decomposition stems from the application of an
isometric low-pass filter. Therefore, the innovations ε(j) concentrate on lower and lower
frequencies as scale j increases. The whole construction is, however, developed in the time
domain and so each detail process is associated with a precise time horizon. The same is
true for the related persistent component. For instance, on daily basis, scale j = 1 involves
two-day shocks, scale j = 2 four-day innovations (that may proxy weekly shocks) and so
on.

We apply the previous decomposition to the process of market (excess) log returns
associated, for instance, to S&P 500 index. We consider an Epstein-Zin investor that
chooses how to distribute her wealth among J + 1 risky assets and a riskless security, with
a periodic rebalancing of 2J time units. Log returns of these risky assets are supposed

to mimic the persistent components x
(1)
t , . . . , x

(J+1)
t of market log returns. Moreover, we

assume that each x
(j)
t follows an AR(1) process on its own scale:

x
(j)

t+2j
= µj (1− φj) + φjx

(j)
t + sjε

(j)

t+2j
.
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Finally, the fundamental innovations εt are i.i.d. and distributed as standard normal.
In a simplified version of the model, by denoting portfolio loadings by πt(j), the return

over 2J periods is

Rp,t+2J =
J+1∑
j=1

πt(j)e
x
t+2J

(j) +

1−
J+1∑
j=1

πt(j)

 e2Jrf .

The previous assumptions allow the vector of returns zt =
[
x

(1)
t , . . . , x

(J+1)
t

]′
to follow the

V AR dynamics
zt+2J = Φ0 + Φzt + vt+2J ,

where vt is a multivariate white noise on the time grid t− k2J with k ∈ Z.
The agent has recursive preferences but her utility depends on the current consumption

and the certainty equivalent associated with the utility 2J periods ahead:

max
{Ct,πt}t=k2J

Ut =

(
(1− β)C

(1−γ)/θ
t + βEt

[
U1−γ
t+2J

]1/θ
)θ/(1−γ)

sub Wt+2J = Rp,t+2J (Wt − Ct) ,

where 0 < β < 1 is the preference discount factor, γ > 0 is the coefficient of rela-
tive risk aversion, ψ denotes the intertemporal elasticity of substitution (IES) and θ =
(1− γ) /

(
1− ψ−1

)
. Consumption Ct and wealth Wt are scalars, while the vector πt con-

tains the portfolio weights associated with the J + 1 securities into consideration.
The previous VAR representation of returns allows us to embed our optimal consumption-

investment problem into Campbell, Chan, and Viceira (2003) portfolio theory. In particu-
lar, we exploit the affine guess

πt = A0 +A1zt

and, after approximating log return, budget constraint and Euler equation, we determine
the optimal asset allocation, which is driven by myopic and hedging motives. The myopic
demand is induced exclusively by current risk premia while the intertemporal hedging de-
mand is driven by the ability of present risk premia to predict future changes in investment
opportunities. This feature is captured by the covariance between current excess returns
and future consumption-wealth ratio. In particular, we get

πt = A0,myopic +A0,hedging + (A1,myopic +A1,hedging) zt.

Although the investor’s horizon is 2J , the optimal capital allocation involves all the com-
ponents of market returns, not only the one at scale J .

The orthogonality of the Extended Wold Decomposition ensures that the myopic part

of πt(j) depends only on x
(j)
t . Moreover, if γ = 1 - because, for instance, the investor has
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logarithmic utility - the hedging part of πt disappears. Then, for a myopic investor the

weight πt(j) depends only on x
(j)
t . Instead, if γ 6= 1, the resulting capital allocation on the

j-th component of market returns depends also on the other components. In particular,

πt(j) depends on x
(i)
t with i 6= j through the term A1,hedgingzt. Hence, the share πt(j)

invested in the component x
(j)
t depends on the components at scales i 6= j just for hedging

purposes.
We corroborate our analysis by estimating optimal weights of a portfolio investing in

persistent components of S&P 500 index for different levels of risk aversions. If γ = 1 the
investor is fully myopic and the weights are all equal across scales. When γ increases, the
investment diversifies within persistent assets and portfolio loadings to high scales become
prominent.

The article is organized as follows. The next section summarizes the Extended Wold
Decomposition of Ortu, Severino, Tamoni, and Tebaldi (2017) in general terms. Section 3
shows how to apply the decomposition in order to properly set up a multeperiod asset allo-
cation problem. Section 4 derives the approximated optimal solution of the consumption-
portfolio problem and discusses the results, highlighting the role of persistence in con-
structing optimal loadings. Then, Section 5 is devoted to an empirical illustration of the
methodology, while Section 6 concludes. The Appendix includes some complements of the
theory.

2 Disentangling heterogeneous levels of persistence

As anticipated in Subsection 1.1, Ortu, Severino, Tamoni, and Tebaldi (2017) provide the
methodology to decompose any zero-mean weakly stationary purely non-deterministic time
series x = {xt}t∈Z into uncorrelated persistent components linearly generated by shocks
with increasing durations.

By the Classical Wold Decomposition Theorem it is possible to define a unit variance
white noise process ε = {εt}t∈Z such that any realization xt can be expressed as

xt =

+∞∑
k=0

αhεt−h,

+∞∑
h=0

α2
h < +∞.

Each αh is the impulse response function of xt with respect to a shock occurred h periods
before. We refer to ε as the process of fundamental innovations of x.

The Extended Wold Decomposition, instead, dismantles the calendar-time occurrence

of fundamental innovations by decomposing the same xt into uncorrelated variables x
(j)
t

associated with specific levels of persistence.
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Theorem 1 Let x be a zero-mean, weakly stationary purely non-deterministic stochastic
process. Then xt decomposes as1

xt =
+∞∑
j=1

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j
,

where

i) for any fixed j ∈ N, the detail process ε(j) =
{
ε

(j)
t

}
t∈Z

is an MA(2j−1) with respect

to the classical Wold innovations of x:

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i


and

{
ε

(j)

t−k2j

}
k∈Z

is a unit variance white noise;

ii) for any j ∈ N, k ∈ N0, the coefficients β
(j)
k are unique and they satisfy

β
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 ,

hence they do not depend on t and
∑∞

k=0

(
β

(j)
k

)2
< +∞ for any j ∈ N;

iii) letting

x
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j
,

then, for any j, l ∈ N, p, q, t ∈ Z, E
[
x

(j)
t−px

(l)
t−q

]
depends at most on j, l, p − q.

Moreover,

E
[
x

(j)

t−m2j
x

(l)

t−n2l

]
= 0 ∀j 6= l, ∀m,n ∈ N0, ∀t ∈ Z.

We call x
(j)
t persistent component at scale j and we refer to β

(j)
k as multiscale im-

pulse response associated with level of persistence j and time-shift k2j . Moreover, fixed a
maximum scale J , it is possible to write the orthogonal decomposition

xt =

J∑
j=1

x
(j)
t +m

(J)
x,t ,

1Throughout the paper, the equalities between random variables are in the L2-norm.
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where the residual component m
(J)
x,t satisfies

m
(J)
x,t =

+∞∑
k=0

γ
(J)
k

 1√
2J

2J−1∑
i=0

εt−k2J−i

 , γ
(J)
k =

1√
2J

2J−1∑
i=0

αk2J+i.

The support of details
{
ε

(j)

t−k2j

}
k∈Z

employed in the decomposition is sparser and

sparser as the scale raises, conveying the intuition of increasing duration (strengthen by the

higher order of MA). Hence, scale-specific impulse responses β
(j)
k capture the sensitivity of

xt with respect to underlying shocks with heterogeneous durations related, for instance, to
short-, medium- or long-term economic factors. As a result, due to the dichotomic nature

of the construction, each persistent component x
(j)
t may be associated with shocks of 2j

periods. For example, on quarterly basis, scale j = 1 collects the impact of semiannual
innovations, scale j = 2 involves annual disturbances and so on.

To illustrate the Extended Wold Decomposition, we plot in Figure 1 the multiscale
impulse responses and the persistent components of a simulated weakly stationary AR(2)
process defined by xt = 1.2xt−1 − 0.3xt−2 + εt, where we employ a Gaussian white noise.
After demeaning the time series, we follow the estimation procedure described in Section
5. We observe that components at different time scales may feature contrasting behaviours
that are not recognizable in the aggregate process. Indeed, impulse responses on the first
time scale provide evidence of mean reversion, while the second scale reveals some degree of
delayed overreaction. Scale 3 instead features the usual pattern of autoregressive impulse
responses.

Finally, note that the Extended Wold Decomposition stems from the fundamental in-
novations ε of the original time series x. However, the same decomposition holds in case
ε is any white noise process that allows a MA representation of x. In any case, the or-
thogonality of components induces a decomposition of the variance of xt into the sum of
variances at each scale. Hence, it is possible to assess the relative importance of each
persistent component on the whole process.

The reverse construction is also feasible. Indeed, taken as given a white noise process

ε and the dynamics x
(j)
t on different scales, Ortu, Severino, Tamoni, and Tebaldi (2017)

show how to rebuild the aggregated time series obtained by summing up such x
(j)
t .

Theorem 2 Let ε = {εt}t∈Z be a unit variance white noise process. For any j ∈ N, define

the detail process ε(j) =
{
ε

(j)
t

}
t∈Z

as

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i
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Multiscale IRFs of AR(2) from scale 1 to 3
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Figure 1: Estimated multiscale impulse response functions and persistent components of a
demeaned weakly stationary AR(2) process defined by xt = 1.2xt−1 − 0.3xt−2 + εt.
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and consider a stochastic process x(j) =
{
x

(j)
t

}
t∈Z

such that

x
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j
,

+∞∑
j=1

+∞∑
k=0

(
β

(j)
k

)2
< +∞.

Then, the process x = {xt}t∈Z defined by

xt =

+∞∑
j=1

x
(j)
t

is zero-mean, weakly stationary purely non-deterministic and

xt =

+∞∑
h=0

αhεt−h,

where, for any h ∈ N0,

αh =

+∞∑
j=1

1√
2j
β

(j)⌊
h

2j

⌋χ(j)(h)

and

χ(j)(h) =

{
−1 if 2j

⌊
h
2j

⌋
∈
{
h− 2j + 1, . . . , h− 2j−1

}
,

1 if 2j
⌊
h
2j

⌋
∈
{
h− 2j−1 + 1, . . . , h

}
.

This result is particularly fruitful in the context of the paper because it allows to
directly specify the dynamics on different scales and to aggregate each subseries into a
stationary process as a second step. In our financial application, for example, we will
assume autoregressive processes at any persistence level.

3 Persistence-based capital allocation

3.1 Decomposition of market return and risk-free rate

We consider as weakly stationary process the one of market log return r = {rt}t∈Z.2 The
fundamental innovations of r, denoted by ε = {εt}t∈Z, generate the whole information
structure. By fixing a maximum scale J , rt decomposes as

rt = µr +

J∑
j=1

r̃t(j) + m̃r,t(J),

2Lower-case letters denote variables in logs.
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Figure 2: Realizations of daily log market and log risk-free return from January 2, 2013 to
December 31, 2015. Market returns are taken from S&P 500 index, while the risk-free rate
comes from three-month Treasury Bills.
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where µr is the expectation of rt, each r̃t(j) is the persistent component of demeaned rt at
scale j and m̃r,t(J) is the related residual component.3 By defining

rt(j) = r̃t(j) +
µr
2j
, mr,t(J) = m̃r,t(J) +

µr
2J
,

we find the decomposition

rt =

J∑
j=1

rt(j) + rt(J + 1), (1)

where we name rt(J + 1) = mr,t(J) with a little abuse of notation. We plot in Figure 2 the
daily realizations from January 2013 to December 2015 while Figure 3 depicts the variables
r̃t(j) for scales j = 1, . . . , 8.

In Figure 4 we show the variance explained by each persistent component of daily log
returns. Due to the orthogonality of the Extended Wold Decomposition, the variance of

rt turns out to be the sum of the variances of each r
(j)
t . In this example, the first eight

scales explain, together, 99, 6% of the variance of rt. As we can observe, most of the
weight is associated to low time scales, hence the process is mainly sensitive to short-term
disturbances.

Similarly, we deal with the persistent components of a short-term bond traded in the
market. To ease the terminology, we refer to this security as a riskless asset. We denote the
related log risk-free rate process by f = {ft}t∈Z and its first moment by µf . In addition,
we assume that f is a weakly stationary process driven by the same innovations ε that
generate r. With respect to these disturbances, the persistent components of demeaned ft
are the variables f̃t(j), for j = 1, . . . , J , while the residual component at scale J is m̃f,t(J).
The persistence-based decomposition of f is, then,

ft = µf +
J∑
j=1

f̃t(j) + m̃f,t(J).

By defining

ft(j) = f̃t(j) +
µf
2j
, mf,t(J) = m̃f,t(J) +

µf
2J
,

we deduce the orthogonal decomposition of the risk-free rate

ft =

J∑
j=1

ft(j) + ft(J + 1), (2)

where ft(J + 1) = mf,t(J).
Now we consider market portfolio log return in excess of log short-term rate, i.e. the

process x = {xt}t∈Z such that xt = rt−ft. This time series is still driven by the shocks ε =

3The notation r̃t(j), instead of r̃
(j)
t is convenient for the vector structures that we will build later.
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Figure 3: Estimated persistent components of daily log market return (from S&P 500
index) from January 2, 2013 to December 31, 2015 at scales j = 1, . . . , 8.
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Figure 4: Variance explained by each scale (from j = 1 to j = 8) over total variance.
The whole time series of daily log market returns from S&P 500 index is considered (from
January 4, 1954 to December 30, 2016).
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{εt}t∈Z, therefore the previous persistence-based decompositions of r and f immediately
provide

xt =
J∑
j=1

xt(j) + xt(J + 1), (3)

where xt(J + 1) = rt(J + 1)− ft(J + 1) and, for all j = 1, . . . , J ,

xt(j) = rt(j)− ft(j) = r̃t(j)− f̃t(j) +
µr − µf

2j
.

3.2 Autoregressive persistent components

In order to exploit the persistent components of market log return and log risk-free rate in
a factor-based asset allocation, we need to make assumptions on their dynamics. Hence, we
adapt the assumptions of multiperiod strategic asset allocation by Campbell and Viceira
(1999) and Campbell, Chan, and Viceira (2003). More specifically, we build our model on
the following.

(A1) The investor chooses how to allocate her wealth among J + 1 risky assets and J +
1 riskless securities. Log returns rt(1), . . . , rt(J) of first J risky assets mimic the
persistent components of market log return, while the log return of the last risky
security reproduces the residual component rt(J + 1). The same reasoning applies
to the first J risk-free assets, whose log returns ft(1), . . . , ft(J) mimic the persistent
components of the log interest rate of a short-term bond, while the log return of the
last safe security reproduces the residual ft(J + 1).

(A2) Investor’s preferences are described by a recursive utility à la Epstein-Zin but the
agent consumes and reallocates her portfolio over time-intervals of length 2J .

(A3) For j = 1, . . . , J , each persistent component ft(j) of log risk-free rate follows an
AR(1) process on its own scale:

ft+2j (j) = µf,j (1− ψj) + ψjft(j) + sf,jε
(j)

t+2j
for j = 1, .., J

where µf,j = µf/2
j and sf,j = β

(j)
f,0 with β

(j)
f,0 indicating the first multiscale impulse

response at scale j of f .4

4Equivalently,
ft+2j (j)− µf,j = ψf,j (ft(j)− µf,j) + sf,jε

(j)

t+2j
for j = 1, .., J.

In particular, if ψj is null, ft(j) is a white noise process and the usefulness of the persistence-based decom-

position lies in the definition of sf,j = β
(j)
f,0. This choice is crucial in order to avoid a variance mismatching

between the scales and the aggregated data. This observation holds for the following dynamics, too.
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In a similar way, ft(J + 1) is an AR(1) process:

ft+2J (J + 1) = µf,J+1 (1− ψJ+1) + ψJ+1ft(J + 1) + sf,J+1

 1√
2J

2J−1∑
i=0

εt+2J−i

 ,

where µf,J+1 = µf,J and sf,J+1 = γ
(J)
f,0 is the first coefficient of ft(J + 1).5

Persistent components of market log return in excess of log short-term rate follow an
AR(1) on their own scale:

xt+2j (j) = µj (1− φj) + φjxt(j) + sjε
(j)

t+2j
for j = 1, .., J

with µj = (µr − µf ) /2j and sj 6= 0. Here we set sj = β
(j)
0 , which denotes the first

multiscale impulse response at scale j of x.6

Similarly, xt(J + 1) is an AR(1):

xt+2J (J + 1) = µJ+1 (1− φJ+1) + φJ+1xt(J + 1) + sJ+1

 1√
2J

2J−1∑
i=0

εt+2J−i

 ,

where µJ+1 = µJ and sJ+1 = γ
(J)
0 is the first coefficient of the residual component of

xt(J + 1).7

(A4) Fundamental innovations εt are i.i.d. and normally distributed with zero mean and

unit variance. Hence, innovations in the market components ε
(j)

t+2j
are also i.i.d. and

distributed as standard Gaussian. The same shocks drive log market return, log
risk-free rate and excess log return.

5Equivalently,

ft+2J (J + 1)− µf,J+1 = ψJ+1 (ft(J + 1)− µf,J+1) + sf,J+1

 1√
2J

2J−1∑
i=0

εt+2J−i

 .

6An equivalent writing is

xt+2j (j)− µj = φj (xt(j)− µj) + sjε
(j)

t+2j
for j = 1, .., J.

7Equivalently,

xt+2J (J + 1)− µJ+1 = φJ+1 (xt(J + 1)− µJ+1) + sJ+1

 1√
2J

2J−1∑
i=0

εt+2J−i

 .
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The investor’s portfolio selection problem consists in deciding the share πt(j) of her
current savings to be invested in the asset mimicking the j-th component of market log
return for j = 1, 2, ...J and the share πt(J + 1) to be invested in the security reproducing
the residual component rt(J+1). The remaining portfolio weights are invested in the assets
mimicking the components of the log risk-free rate. Precisely, the amount 1

J+1 − πt(j) is
invested in the j-th of these assets. The resulting portfolio, whose loadings sum up to 1,
generalizes the standard portfolio in which the share 1 −

∑J+1
j=1 πt(j) is allocated in the

whole riskless asset. Indeed, this special case is obtained when J = 0.
According to Assumption (A3), scale-specific excess log market returns are supposed

to be autoregressive. Empirically, once we have estimated multiscale impulse responses,

details ε
(j)
t and persistent components rt(j), we set sj = β

(j)
0 and we estimate φj by OLS.

The result depicted in Figure 5 is encouraging. The AR modelling does not preclude rt(j)
to be a white noise process. Also in this special case, however, the role of the persistence-
based decomposition is not negligible because it prescribes the choice of sj . The same
reasoning applies to log risk-free rate.

Q2-15 Q3-15 Q4-15

Days

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x(1
)

x
t
(1) of daily excess log return

Estimated x(1)

Approximated x (1) as an AR(1)

Figure 5: Comparison between the component xt(1) estimated from the time series of
daily excess log return and the AR(1) approximation of Assumption (A3). In this case,
s1 = 0.669 and φ1 = −0.0357. The plot covers the period between January 2015 and
December 2015.
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By Assumption (A3), for any scale j = 1, . . . , J , the dynamics of ft(j) and xt(j) can
be rewritten as

ft+2J (j) = µf,j

(
1− ψ2J−j

j

)
+ ψ2J−j

j ft(j) + sf,j

2J−j−1∑
i=0

ψijε
(j)

t+2J−i2j ,

xt+2J (j) = µj

(
1− φ2J−j

j

)
+ φ2J−j

j xt(j) + sj

2J−j−1∑
i=0

φijε
(j)

t+2J−i2j

by backward substitution. Indeed, the autoregressive assumptions allow us to express the
realizations at time t+ 2J in terms of the ones at t for any scale under scrutiny.

Let ft be the vector that collects the J + 1 components of log risk-free rate and xt the
vector of components of excess log return. We define the vector zt of length 2J + 2 by
stacking ft and xt, that is

ft =


...

ft(j)
...

 , xt =


...

xt(j)
...

 , zt =

[
ft
xt

]
.

Thanks to previous relations, it is possible to express the dynamics of zt through the
V AR representation:

zt+2J = Φ0 + Φzt + vt+2J ,

where

• Φ0 is a vector of length 2J + 2, with entries

Φ0(j) = µf,j

(
1− ψ2J−j

j

)
for j = 1, . . . , J,

Φ0(J + 1) = µf,J+1 (1− ψJ+1) ,

Φ0(j) = µj−J−1

(
1− φ22J−j+1

j−J−1

)
for j = J + 2, . . . , 2J + 1,

Φ0(2J + 2) = µJ+1 (1− φJ+1) .

• Φ is a (2J + 2)× (2J + 2) diagonal matrix, whose general diagonal term is

Φ(j, j) = ψ2J−j
j for j = 1, . . . , J,

Φ(J + 1, J + 1) = ψJ+1,

Φ(j, j) = φ22J−j+1

j−J−1 for j = J + 2, . . . , 2J + 1,

Φ(2J + 2, 2J + 2) = φJ+1.
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• vt+2J is a vector of length 2J + 2 such that

vt+2J (j) = sf,j
∑2J−j−1

i=0 ψijε
(j)

t+2J−i2j for j = 1, . . . , J,

vt+2J (J + 1) =
sf,J+1√

2J

∑2J−1
i=0 εt+2J−i,

vt+2J (j) = sj−J−1
∑22J−j+1−1

i=0 φij−J−1ε
(j−J−1)

t+2J−i2j−J−1 for j = J + 2, . . . , 2J + 1,

vt+2J (2J + 2) =
sJ+1√

2J

∑2J−1
i=0 εt+2J−i.

Let Σv denote the covariance matrix of vt+2J conditional on time t. Then, Σv is a
block matrix

Σv = vart
(
vt+2J

)
=

[
Σf Σfx

Σxf Σx

]
,

where Σf and Σx are the conditional covariance matrices of ft+2J and xt+2J respectively
and

Σfx(p, q) = covt
(
ft+2J (p), xt+2J (q)

)
, p, q = 1, . . . , J + 1.

By the properties of details ε
(j)
t , Σf , Σx and Σfx are diagonal matrices. Hence, Σfx =

Σxf . We denote by σ2
f the (J + 1)-vector which collects all diagonal terms of Σf , that is

σ2
f (j) = s2

f,j

1− ψ2J−j+1

j

1− ψ2
j

for j = 1, . . . , J

and σ2
f (J + 1) = s2

f,J+1. Similarly, σ2
x is the vector that contains the diagonal terms of Σx:

σ2
x(j) = s2

j

1− φ2J−j+1

j

1− φ2
j

for j = 1, . . . , J

and σ2
x(J + 1) = s2

J+1. Finally, σfx includes the diagonal terms of Σfx:

σfx(j) = sf,jsj
1− (ψjφj)

2J−j

1− ψjφj
for j = 1, . . . , J

with σfx(J + 1) = sf,J+1sJ+1.

Moreover, the orthogonality properties of details ε
(j)
t guarantee that vt defines a mul-

tivariate white noise on the time grid t − k2J with k ∈ Z. This feature, ensured by
the Extended Wold Decomposition, is crucial for translating one-period rebalancing to 2J -
period reallocation. Although persistent components contemporaneously capture economic
innovations with heterogeneous durations, their orthogonality every 2J time units allows
us to properly set a multiperiod investment problem.
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3.3 Optimization problem and approximation of portfolio return

We assume in (A2) that the investor has preferences captured by a utility function à la
Epstein-Zin (see Epstein and Zin (1989), Epstein and Zin (1991) and Weil (1989)), though
it displays the following peculiarity: her utility depends on current consumption and the
certainty equivalent associated with the utility 2J periods ahead, that is

max
{Ct,πt}t=k2J

Ut =

(
(1− β)C

(1−γ)/θ
t + βEt

[
U1−γ
t+2J

]1/θ
)θ/(1−γ)

sub Wt+2J = Rp,t:t+2J (Wt − Ct) ,

where 0 < β < 1 is the preference discount factor, γ > 0 is the coefficient of rela-
tive risk aversion, ψ denotes the intertemporal elasticity of substitution (IES) and θ =
(1− γ) /

(
1− ψ−1

)
. Consumption Ct is a scalar, while the vector πt of RJ+1 contains the

portfolio weights associated with the J + 1 risky securities into consideration. Moreover,
Wt is the investor’s wealth and Rp,t:t+2J denotes the return on investor’s portfolio in 2J

periods. Similarly, the 2J -period log returns of the risky and the risk-free assets - as well
as the related excess log returns - are denoted by

rt:t+2J (j), ft:t+2J (j), xt:t+2J (j).

Following the previous description, the portfolio return is given by

Rp,t:t+2J = erp,t:t+2J =

J+1∑
j=1

(
1

J + 1
− πt(j)

)
eft:t+2J

(j) +

J+1∑
j=1

πt(j)e
r
t:t+2J

(j).

We generalize the approximation of log returns provided by Campbell, Chan, and Viceira
(2003) to our portfolio on the period from t to t+ 2J , obtaining

rp,t:t+2J '
J+1∑
j=1

(
1

J + 1
− πt(j)

)
ft:t+2J (j) +

J+1∑
j=1

πt(j)rt:t+2J (j) +
1

2
vart

(
rp,t:t+2J

)
=

ft:t+2J

J + 1
+ π′txt:t+2J +

1

2
vart

(
rp,t:t+2J

)
.

See the derivation in Appendix A. Hence, the log portfolio return is approximated by

rp,t:t+2J '
ft:t+2J

J + 1
+π′txt:t+2J +2J

{
1

2
π′t
(
σ2
x − Σxπt

)
+

J

J + 1

[
π′tσfx +

1

2

vart
(
ft+2J

)
J + 1

]}
,

where vart
(
ft+2J

)
is simply obtained by summing up the entries of the vector σ2

f . Note
that, by setting J = 0, we precisely retrieve Campbell, Chan, and Viceira (2003) approxi-
mation rule.
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Moreover, we introduce a further simplifying assumption:

rt:t+2J (j) = 2Jrt+2J (j), ft:t+2J (j) = 2Jft+2J (j), xt:t+2J (j) = 2Jxt+2J (j), (4)

that allows us to compute the 2J -period return by employing just the one-period return at
time t+ 2J . Hence, the previous approximation formula becomes

rp,t:t+2J ' 2J

{
ft+2J

J + 1
+ π′txt+2J +

1

2
π′t
(
σ2
x − Σxπt

)
+

J

J + 1

[
π′tσfx +

1

2

vart
(
ft+2J

)
J + 1

]}
.

The value function per unit of wealth, namely Vt = Ut/Wt, is given by

Vt = (1− β)
− ψ

1−ψ

(
Ct
Wt

) 1
1−ψ

.

The Euler Equation associated with this optimization problem implies that the return
Ri,t:t+2J on any asset i must satisfy the condition

Et

{β(Ct+2J

Ct

)− 1
ψ

}θ
R
−(1−θ)
p,t:t+2J

Ri,t:t+2J

 = 1. (5)

When i = p, the Euler Equation rewrites as

Et

{β(Ct+2J

Ct

)− 1
ψ

Rp,t:t+2J

}θ = 1

or, equivalently,

Et

[
e
θ log β− θ

ψ
∆Jct+2J

+θr
p,t:t+2J

]
= 1, (6)

where ∆Jct+2J ≡ ct+2J − ct and ct is log consumption at time t. Also in other occurrences
we will employ the notation ∆J for the first-difference operator over the period from t to
t+ 2J .

4 Solution method

4.1 Log-linearisation of Euler Equation and budget constraint

Our proposed solution method follows Campbell and Viceira (1999) and builds on the log-
linear approximations of Euler Equation and intertemporal budget constraint previously
proposed by Campbell (1993). In order to get a log-linear approximation of the Euler
Equation (6), we take a second order Taylor approximation around the conditional mean

21



of
{

∆Jct+2J , rp,t:t+2J
}

and then use the property of logs: log(1 + ε) ' ε when ε is small
enough. As a result, we get the log-linear approximate Euler Equation

0 = θ log β − θ

ψ
Et
[
∆Jct+2J

]
+ θEt

[
rp,t:t+2J

]
+

1

2
vart

(
θ

ψ
∆Jct+2J − θrp,t:t+2J

)
.

Reordering terms, we get the equilibrium relationship between expected log consumption
growth and expected log return on wealth

Et
[
∆Jct+2J

]
' ψ log β + vp,t + ψEt

[
rp,t:t+2J

]
, (7)

where

vp,t =
1

2

θ

ψ
vart

(
∆Jct+2J − ψrp,t:t+2J

)
. (8)

We repeat the procedure and take a log-linear approximation of Euler Equation (1)
in the case ri,t:t+2J = rt:t+2J (j) for j = 1, . . . , J + 1. Then, we subtract the resulting
log-linear equation for the case ri,t:t+2J = ft:t+2J (j) from the equation obtained when
ri,t:t+2J = rt:t+2J (j) and we deduce the equation for log risk premia:

Et
[
2Jxt+2J (j)

]
+

1

2
vart

(
2Jxt+2J (j)

)
= 2Jcovt

(
θ

ψ
∆Jct+2J + (1− θ) rp,t:t+2J , rt+2J (j)

)
− 2Jcovt

(
θ

ψ
∆Jct+2J + (1− θ) rp,t:t+2J , ft+2J (j)

)
− 1

2

{
vart

(
2Jrt+2J (j)

)
− vart

(
2Jft+2J (j)

)
− vart

(
2Jxt+2J (j)

)}
.

We also employed assumptions in Equations (4). By using the identity

∆Jct+2J =
(
ct+2J − wt+2J

)
− (ct − wt) + ∆Jwt+2J (9)

and the log-linear approximation of budget constraint8

∆Jwt+2J ≈ rp,t:t+2J +

(
1− 1

ρ

)
(ct − wt) + k, (10)

8Here k and ρ are endogenous parameters depending on the mean optimal consumption-wealth ratio,
which is determined once the model is solved (see Campbell (1993)):

ρ = 1− eE[ct−wt], k = log(ρ)−
(

1− 1

ρ

)
E [ct − wt] .

Numerically, we start by setting ρ = β, as suggested by Campbell and Viceira (1999), and we compute the
optimal consumption-wealth stream based on this value. Then, if E [ct − wt] is positive, we define a new ρ,
as described above, and we repeat the procedure. In case the tolerance between two consequent values of
ρ is smaller than 10−3, we stop the recursion and we consider the consumption policy associated with the
last value of optimal ρ.
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we find the equation

Et
[
xt+2J (j)

]
+

2J

2
vart

(
2Jxt+2J (j)

)
(11)

=
θ

ψ

(
σr(j),c−w,t − σf(j),c−w,t

)
+ γ

(
σr(j),p,t − σf(j),p,t

)
− 2J

2

{
vart

(
rt+2J (j)

)
− vart

(
ft+2J (j)

)
− vart

(
xt+2J (j)

)}
.

4.2 Solution for optimal portfolio

The goal now is to write the covariance terms at the right-hand side of Equation (11) as
explicit functions of πt and to solve for it. Observe that

σr(j),p,t = 2J
{
π′t

(
Σ

[j]
x + Σ

[j]
fx

)
+
σfx (j)

J + 1
+
σ2
f (j)

J + 1

}
and

σf(j),p,t = 2J
{
π′tΣ

[j]
fx +

σ2
f (j)

J + 1

}
,

where Σ
[j]
x denotes the j-th column of Σx. By taking the difference σr(j),p,t − σf(j),p,t and

stacking the equations over j, we get

σx,p,t = 2J
{

Σxπt +
σfx

J + 1

}
.

Moreover, note that σr(j),c−w,t and σf(j),c−w,t depend on the endogenous consumption-
wealth ratio which, in turns, depends on πt through rp,t:t+2J . See the log-linear approx-
imation of ∆Jwt+2J in Equation (10) and ∆Jct+2J in Equation (9). As a consequence
of the concatenation of endogenous terms πt and ct − wt, in order to find a solution for
(πt, ct − wt) we make a guess on the optimal portfolio and consumption rules.

Campbell and Viceira (1999) assume that weights assigned to market portfolio are
affine in the equity premium, while optimal log consumption-wealth ratio is quadratic in
the equity premium. Accordingly, using the vector of state variables zt, we guess

πt = A0 +A1zt

ct − wt = b0 +B′1zt + z′tB2zt,

where A0 is a vector of length J + 1, A1 is a (J + 1)× (2J + 2) matrix, b0 is a scalar, B1

is a vector of length 2J + 2 and B2 is a square matrix of order 2J + 2. As suggested by
Campbell, Chan, and Viceira (2003), we can assume B2 to be symmetric in order to reduce
the dimensionality of the problem, with no loss of generality.
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By exploiting the guess on ct −wt, the covariances σr(j),c−w,t and σf(j),c−w,t rewrite as

σr(j),c−w,t = B′1

(
Σ

[J+j+1]
v + Σ

[j]
v

)
+ Φ′0B2

(
Σ

[J+j+1]
v + Σ

[j]
v

)
+
(

Σ
[J+j+1]
v + Σ

[j]
v

)′
B2Φ0

+z′tΦ
′B2

(
Σ

[J+j+1]
v + Σ

[j]
v

)
+
(

Σ
[J+j+1]
v + Σ

[j]
v

)′
B2Φzt,

σf(j),c−w,t = B′1Σ
[j]
v + Φ′0B2Σ

[j]
v +

(
Σ

[j]
v

)′
B2Φ0 + z′tΦ

′B2Σ
[j]
v +

(
Σ

[j]
v

)′
B2Φzt.

Therefore

σr(j),c−w,t − σf(j),c−w,t =
(

Σ
[J+j+1]
v

)′
B1 +

(
Σ

[J+j+1]
v

)′ (
B2 +B′2

)
(Φ0 + Φzt) .

Stacked, these equations provide

σx,c−w,t = σr,c−w,t − σf ,c−w,t

=
[(

ΣvH
′
x

)′
B1 +

(
ΣvH

′
x

)′ (
B2 +B′2

)
Φ0

]
+
[(

ΣvH
′
x

)′ (
B2 +B′2

)
Φ
]
zt

= Λ0 + Λ1zt,

where Λ0 is a vector of length J + 1, Λ1 is a (J + 1) × (2J + 2) matrix and Hx is a
selection matrix which selects the vector of excess returns xt from zt.

9 Furthermore, up
to multiplying by 2J , the third term in the expression of log risk premia at the right-hand
side of Equation (11) is equivalent to

−1

2

(
vart

(
rt+2J (j)

)
− vart

(
ft+2J (j)

)
− vart

(
xt+2J (j)

))
= vart

(
ft+2J (j)

)
− covt

(
rt+2J (j), ft+2J (j)

)
= vart

(
ft+2J (j)

)
− covt

(
xt+2J (j) + ft+2J (j), ft+2J (j)

)
= −covt

(
xt+2J (j), ft+2J (j)

)
= −σx(j),f(j),t

and, piling over j, we can write[
−σx(j),f(j),t

]
j=1,..,J+1

= −σfx.

9Hx is the (J + 1)× (2J + 2) matrix defined by

 0 . . . 0
...

. . .
... I

0 . . . 0

.
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Finally, by stacking over j the log risk premia (the left-hand side of Equation (11)) and
their expression at the right-hand side of the same equality, we get

Et
[
xt+2J

]
+

2J

2
vart

(
xt+2J

)
= HxΦ0 +HxΦzt +

2J

2
σ2
x

and

θ

ψ
σx,c−w,t + γσx,p,t − 2Jσfx =

θ

ψ
(Λ0 + Λ1zt) + 2Jγ

(
Σxπt +

σfx

J + 1

)
− 2Jσfx.

Then, from the Euler Equation

Et
[
xt+2J

]
+

2J

2
vart

(
xt+2J

)
=
θ

ψ
σx,c−w,t + 2Jγ

(
Σxπt +

σfx

J + 1

)
− 2Jσfx,

we obtain

πt =
1

2Jγ
Σ−1
x

[
Et
[
xt+2J

]
+

2J

2
vart

(
xt+2J

)
+ 2J

(
1− γ

J + 1

)
σfx

]
︸ ︷︷ ︸

myopic demand

+
1

2Jγ
Σ−1
x

[
− θ
ψ
σx,c−w,t

]
︸ ︷︷ ︸

hedging demand

,

that is

πt =
1

2Jγ
Σ−1
x

[
HxΦ0 +HxΦzt +

2J

2
σ2
x + 2J

(
1− γ

J + 1

)
σfx

]
︸ ︷︷ ︸

myopic demand

+
1

2Jγ
Σ−1
x

[
− θ
ψ

(Λ0 + Λ1zt)

]
︸ ︷︷ ︸

hedging demand

.

The strategic allocation in the risky assets, πt, displays two components. The first one is
driven by the features of current investment opportunity set, such as the current risk premia
and the covariance between risky and riskless assets. The second one, instead, is determined
by future changes of the investment opportunity set, to the extent to which these are
predictable through the covariance between current optimal consumption-wealth ratio and
risk premia. Coherently, the first term of πt is called myopic demand while the second
one is referred to as hedging demand. Indeed, the first term depends on contemporary
motives while the second one incorporates the hedging purposes of the investor, who wants
to protect himself from unfavourable future changes in investment opportunities.

By collecting terms in an alternative way, we find

πt =
1

2Jγ
Σ−1
x

[
HxΦ0 +

2J

2
σ2
x + 2J

(
1− γ

J + 1

)
σfx −

θ

ψ
Λ0

]
︸ ︷︷ ︸

A0

+
1

2Jγ
Σ−1
x

[
− θ
ψ

Λ1 +HxΦ

]
︸ ︷︷ ︸

A1

zt.

As a result, the optimal asset allocation is affine in the vector of the state variables zt.
Moreover, by setting J = 0, we retrieve the solution of Campbell, Chan, and Viceira (2003).
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Observe that A0 and A1 depend on exogenous parameters, driving either asset returns
or preferences, and on the endogenous coefficients of consumption policy through Λ0 and
Λ1. In particular, for all j = 1, . . . , J ,

A0(j) =
1− φ2

j

2Jγs2
j

(
1− φ2J−j+1

j

){µj (1− φ2J−j
j

)

+
2Js2

j

2

1− φ2J−j+1

j

1− φ2
j

+ 2J
(

1− γ

J + 1

)
σfx (j)

}
− γ − 1

2Jγs2
j

1

1− ψ
1− φ2

j

1− φ2J−j+1

j

Λ0(j)

A0(J + 1) =
1

2Jγs2
J+1

{
µJ+1 (1− φJ+1) +

2Js2
J+1

2
+ 2J

(
1− γ

J + 1

)
σfx (J + 1)

}
− γ − 1

2Jγs2
J+1

1

1− ψ
Λ0(J + 1)

A1(j, J + 1 + j) =
1

2Jγs2
j

1− φ2
j

1− φ2J−j+1

j

φ2J−j
j − γ − 1

2Jγs2
j

1

1− ψ
1− φ2

j

1− φ2J−j+1
j

Λ1(j, J + 1 + j)

A1(J + 1, 2J + 2) =
1

2Jγs2
J+1

φJ+1 −
γ − 1

2Jγs2
J+1

1

1− ψ
Λ1(J + 1, 2J + 2)

A1(j, i) = − γ − 1

2Jγs2
j

1

1− ψ
1− φ2

j

1− φ2J−j+1

j

Λ1(j, i) for i 6= J + 1 + j

A1(J + 1, i) = − γ − 1

2Jγs2
J+1

1

1− ψ
Λ1(J + 1, i) for i 6= 2J + 2.

It is interesting to see that, when the scales i, j are different, A1(i, j) does not contain
any myopic demand, but only the hedging term. In other words, the share πt(j) of portfolio
invested in asset j depends on the assets at the scales i 6= j just for hedging purposes. The
resulting asset allocation can, then, be written as

πt(j) = A0(j) +A1(j, j)xt(j) +
∑
i 6=j

A1(j, i)xt(i).

4.3 Discussion

The optimal asset allocation is driven by myopic and hedging reasons:
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πt =
1

2Jγ
Σ−1
x

(
HxΦ0 +HxΦzt + 2J

(
1− γ

J + 1

)
σfx +

2J

2
σ2
x

)
︸ ︷︷ ︸

myopic demand

− 1

2J

(
1− 1

γ

)
1

1− ψ
Σ−1
x (Λ0 + Λ1zt)︸ ︷︷ ︸

hedging demand

.

Consequently, the coefficients of optimal asset allocation can be decomposed as

πt = A0,myopic +A0,hedging + (A1,myopic +A1,hedging) zt,

where

A0 =
1

2Jγ
Σ−1
x

(
HxΦ0 +

2J

2
σ2
x + 2J

(
1− γ

J + 1

)
σfx

)
︸ ︷︷ ︸

A0,myopic

−γ − 1

2Jγ

1

1− ψ
Σ−1
x Λ0︸ ︷︷ ︸

A0,hedging

A1 =
1

2Jγ
Σ−1
x HxΦ︸ ︷︷ ︸

A1,myopic

−γ − 1

2Jγ

1

1− ψ
Σ−1
x Λ1︸ ︷︷ ︸

A1,hedging

.

Since the persistent components xt(i) and xt(l) are uncorrelated at any scale i 6= l,
then the matrix Σ−1

x is diagonal. Moreover, from Assumption (A3) Φ is diagonal as well
and, therefore, the myopic part of πt(j) depends only on xt(j) and not on xt(l) for any
l 6= j. Moreover, if γ = 1, the hedging part of πt disappears, in line with Giovannini and
Weil (1989). For instance, this happens when the investor has logarithmic utility, namely
γ = ψ = 1.

Then, for a myopic investor πt(j) depends only on xt(j). On the contrary, if γ 6= 1, the
resulting capital allocation in the j-th component of market returns depends also on the
other components with different degree of persistence.

Note that πt(j) depends on xt(j) and, moreover, on xt(i), with i 6= j, through the term
A1,hedgingzt. Hence, we can claim that the share πt(j) invested in the component xt(j)
depends on the components at scales i 6= j just for hedging purposes.

Finally, although the investor’s horizon is 2J , the optimal capital allocation involves all
the components of market returns, not only the one with persistence J, even if he consumes
and rebalances her portfolio every 2J periods.

4.4 Solution for optimal consumption

In order to assert that our guess is indeed a solution to the investor’s optimization problem,
we still need to show that the optimal consumption-wealth ratio ct − wt is quadratic in
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the vector of state variables zt. To reach this goal, we exploit two useful expressions for
expected consumption growth:

Et
[
∆Jct+2J

]
' ψ log β + vp,t + ψEt

[
rp,t:t+2J

]
(12)

Et
[
∆Jct+2J

]
= Et

[
ct+2J − wt+2J

]
− (ct − wt) + Et

[
∆Jwt+2J

]
. (13)

Equation (12) is obtained from the log-linear approximation of the Euler Equation - see
Equations (7) and (8) - while Equation (13) follows from the accounting identity (9).

In particular, if we substitute the log-linear approximation of the budget constraint of
Equation (10) into the accounting identity, we get

∆Jct+2J ≈
(
ct+2J − wt+2J

)
− 1

ρ
(ct − wt) + rp,t:t+2J + k (14)

and, as a consequence, Equation (13) rewrites as

Et
[
∆Jct+2J

]
= Et

[
ct+2J − wt+2J

]
− 1

ρ
(ct − wt) + Et

[
rp,t:t+2J

]
+ k. (15)

Combining Equations (12) and (15), we obtain

ct − wt = −ρ (ψ log β + vp,t) + ρ(1− ψ)Et
[
rp,t:t+2J

]
+ Et

[
ct+2J − wt+2J

]
+ k. (16)

In order to prove that ct−wt is quadratic in zt we only need to show that Et
[
rp,t:t+2J

]
and vp,t are quadratic in zt because we already know (by using the guess at t + 2J) that
Et
[
ct+2J − wt+2J

]
is quadratic in the vector of state variables. As for the expected portfolio

return, it holds

Et
[
rp,t:t+2J

]
= 2J

{
Et
[
ft+2J

]
J + 1

+ π′tEt
[
xt+2J

]
+

1

2
π′t
(
σ2
x − Σxπt

)
+

J

J + 1

[
π′tσfx +

1

2

vart
(
ft+2J

)
J + 1

]}

= 2J

{
ι′

J + 1
Hf (Φ0 + Φzt) + (A0 +A1zt)

′Hx (Φ0 + Φzt)

+
1

2
(A0 +A1zt)

′ σ2
x −

1

2
(A0 +A1zt)

′Σx (A0 +A1zt)

+
J

J + 1

[
(A0 +A1zt)

′ σfx +
1

2

vart
(
ft+2J

)
J + 1

]}
= Γ0 + Γ1zt + Γ2vec(ztz

′
t), (17)

where the second equality follows from replacing πt with its guess, ι is a (J + 1)-vector of
ones, Hf is a matrix which selects the short-term interest rate components from the vector
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zt, Γ0 ∈ R and Γ1,Γ2 are vectors:

Γ0 = 2J
{

ι′

J + 1
HfΦ0 +A′0HxΦ0 +

1

2
A′0σ

2
x −

1

2
A′0ΣxA0 +

J

J + 1

[
A′0σfx +

1

2

vart (ft+2j )

J + 1

]}
Γ1 = 2J

{
ι′

J + 1
HfΦ + Φ′0H

′
xA1 +A′0HxΦ +

1

2

(
σ2
x

)′
A1 −A′0ΣxA1 +

J

J + 1
σ′fxA1

}
Γ2 = 2J

{
vec(A′1HxΦ)′ − 1

2
vec

(
A′1ΣxA1

)′}
.

Hence, we are left to prove that vp,t is quadratic in zt. Recall that

vp,t =
1

2

θ

ψ
vart

(
∆Jct+2J − ψrp,t:t+2J

)
.

In order to compute this variance, it is convenient to write the expression for the innovation

∆Jct+2J − ψrp,t:t+2J − Et
[
∆Jct+2J − ψrp,t:t+2J

]
since

vart
(
∆Jct+2J − ψrp,t:t+2J

)
= vart

(
∆Jct+2J − ψrp,t:t+2J − Et

[
∆Jct+2J − ψrp,t:t+2J

])
.

From Equation (14), we observe that

∆Jct+2J − ψrp,t:t+2J =
(
ct+2J − wt+2J

)
− 1

ρ
(ct − wt) + (1− ψ)rp,t:t+2J + k

and, therefore,

∆Jct+2J − ψrp,t:t+2J − Et
[
∆Jct+2J − ψrp,t:t+2J

]
= ct+2J − wt+2J − Et

[
ct+2J − wt+2J

]
+ (1− ψ)

(
rp,t:t+2J − Et

[
rp,t:t+2J

])
.

Moreover, from previous calculations it is immediate to see that

rp,t:t+2J − Et
[
rp,t:t+2J

]
= 2J

{
ι′

J + 1
Hfvt+2J +A′0Hxvt+2J + z′tA

′
1Hxvt+2J

}
,

while, by exploiting the guess at time t+ 2J on consumption policy, we have

ct+2J − wt+2J = b0 +B′1zt+2J + z′t+2JB2zt+2J

= b0 +B′1zt+2J + Φ′0B2Φ0 + Φ′0B2Φzt + Φ′0B2vt+2J

+z′tΦ
′B2Φzt + z′tΦ

′B2Φ0 + z′tΦ
′B2vt+2J + v′t+2JB2Φ0

+v′t+2JB2Φzt + vec (B2)′ vec
(
v′t+2Jvt+2J

)
.
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Since Assumptions (A3) and (A4) ensure that

Et
[
vt+2J

]
= 0,

Et
[
zt+2J

]
= Et

[
Φ0 + Φzt + vt+2J

]
= Φ0 + Φzt

and
Et
[
vec (B2)′ vec

(
v′t+2Jvt+2J

)]
= vec (B2)′Σv,

then

Et
[
ct+2J − wt+2J

]
= b0 +B′1Φ0 +B′1Φzt + Φ′0B2Φ0 + Φ′0B2Φzt

+z′tΦ
′B2Φzt + z′tΦ

′B2Φ0 + vec (B2)′Σv, (18)

ct+2J − wt+2J − Et
[
ct+2J − wt+2J

]
= B′1vt+2J + Φ′0B2vt+2J + z′tΦ

′B2vt+2J

+v′t+2JB2Φ0 + v′t+2JB2Φzt

+vec (B2)′ vec
(
v′t+2Jvt+2J

)
− vec (B2)′Σv.

As a consequence,

∆Jct+2J − ψrp,t:t+2J − Et
[
∆Jct+2J − ψrp,t:t+2J

]
= ct+2J − wt+2J − Et

[
ct+2J − wt+2J

]
+ (1− ψ)

(
rp,t:t+2J − Et

[
rp,t:t+2J

])
=

[
B′1 + Φ′0(B2 +B′2) + 2J(1− ψ)A′0Hx + 2J

1− ψ
J + 1

ι′Hf

]
vt+2J

+z′t
[
Φ′(B2 +B′2) + 2J(1− ψ)A′1Hx

]
vt+2J + vec(B2)′vec(vt+2Jv

′
t+2J )

=
{

Π1 + z′tΠ2

}
vt+2J + vec(B2)′vec(vt+2Jv

′
t+2J ),

where we define the vector Π1 and the matrix Π2 as

Π1 = B′1 + Φ′0(B2 +B′2) + 2J(1− ψ)A′0Hx + 2J
1− ψ
J + 1

ι′Hf

Π2 = Φ′(B2 +B′2) + 2J(1− ψ)A′1Hx.

Therefore,

vart
(
∆Jct+2J − ψrp,t:t+2J

)
= Π1ΣvΠ′1 +

(
2Π1ΣvΠ′2

)
zt +

+vec
(
Π2ΣvΠ′2

)
vec

(
ztz
′
t

)
+

+vec(B2)′vart
(
vec(vt+2Jv

′
t+2J )

)
vec(B2),

since vt+2J is conditionally normally distributed - and so all third moments are zero. This
proves that vp,t is quadratic in the state vector zt and, in particular,

vp,t = V0 + V1zt + V2vec
(
ztz
′
t

)
, (19)
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with V0 ∈ R and the vectors V1, V2 defined by

V0 =
θ

2ψ

[
Π1ΣvΠ′1 + vec(B2)′vart

(
vec(vt+2Jv

′
t+2J )

)
vec(B2)

]
V1 =

θ

2ψ
2Π1ΣvΠ′2

V2 =
θ

2ψ
vec

(
Π2ΣvΠ′2

)′
.

As a result, we have shown that the optimal consumption-wealth ratio is quadratic in
zt, as conjectured. In order to solve for the coefficients of the optimal consumption rule
b0, B1 and B2, we simply substitute the expressions of Et

[
rp,t:t+2J

]
, Et

[
ct+2J − wt+2J

]
and

vp,t provided by Equations (17), (18) and (19) respectively into the expression of ct − wt
given by Equation (16). Hence, we deduce that

ct − wt = Ξ0 + Ξ1zt + Ξ2vec
(
ztz
′
t

)
,

where Ξ0 ∈ R and Ξ1,Ξ2 are the vectors

Ξ0 = ρ[−ψ log β + k − V0 + (1− ψ) Γ0 + b0 +B′1Φ0

+vec(B2)′vec
(
Φ0Φ′0

)
+ vec(B2)′vec(Σv)]

Ξ1 = ρ[−V1 + (1− ψ) Γ1 +B′1Φ + 2Φ′0(B′2 +B2)Φ]

Ξ2 = ρ[−V2 + (1− ψ) Γ2 + vec(Φ′B2Φ)′].

The last equations further clarify that ct−wt is quadratic in the state vector, as conjectured.
Observe that Ξ0,Ξ1 and Ξ2 depend on b0, B1 and B2. Thus, for the solution to be consistent,
it must be

b0 = Ξ0

B1 = Ξ′1

vec (B2) = Ξ′2.

5 Estimation of multiscale impulse responses and persistent
components

We briefly recap the estimation strategy of Ortu, Severino, Tamoni, and Tebaldi (2017) for

the coefficients β
(j)
k in the Extended Wold Decomposition of a zero-mean weakly stationary

time series x = {xt}t such that

xt = Φ(L)εt =

+∞∑
h=0

αhεt−h,

+∞∑
h=0

α2
h < +∞,
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with the operator Φ (L) invertible.
We approximate xt by an autoregressive of a suitable order N , determined by the

Bayesian Information Criterion (BIC), namely

xt =
N∑
k=1

bkxt−k + ηt.

By OLS we estimate the regression coefficients bk and the unit variance white noise εt =

ηtE
[
η2
t

]−1/2
. From the relation

xt = ηt +

N∑
k=1

bk

+∞∑
h=0

αhεt−k−h = E
[
η2
t

]1/2
εt +

+∞∑
n=1

 n−1∑
h=max{n−N,0}

αhbn−h

 εt−n,

we get the impulse response functions

α0 = E

(xt − N∑
k=1

bkxt−k

)2
1/2

, αn =
n−1∑

h=max{n−N,0}

αhbn−h ∀n ∈ N.

Then, multiscale impulse responses β
(j)
k can be computed by employing Theorem 1. In

turns, persistent components can be obtained by using as innovations the residuals of the
initial autoregressive regression.

5.1 Estimated portfolio weights

We consider daily data from January 4, 1954 to December 30, 2016. Market portfolio
returns are vwretd of CRSP S&P 500 index, while risk-free rates are taken from FRED
DTB3, which contains the (not seasonally adjusted) secondary market rates of three-month
Treasury Bills. Inflation data are derived from monthly inflation of CRSP database on a
compound basis. We employ inflation for the computation of real log risk-free rate (log
risk-free rate minus log inflation) and real log market return (log return on the S&P index
minus log inflation). The BIC criterium applied to real log market return recommends to
employ an AR(2) process for the construction.

To make our portfolio analysis we fix a maximum scale J = 4. This choice roughly
corresponds to a monthly horizon because scale 4 captures shocks with an approximative
duration of sixteen working days. As already signalled in the Appendix of Campbell,
Chan, and Viceira (2003), the solution algorithm for multivariate strategic allocation is
computationally intensive, due to the employed approximations and the dimensionality
of the linear systems involved. Moreover, in our application the algorithm is not always
stable. Therefore, we focus our discussion on averages results and we provide an heuristic
illustration.
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Figure 6: Mean optimal portfolio weights π(j) for j = 1, ..., 5 with respect to different
degrees of relative risk aversion γ = 1, . . . , 14 and fixed ψ = 0.99.
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First, we set the IES ψ = 0.99 and we run the algorithm for increasing values of relative
risk aversion γ. We estimate the optimal asset allocation πt of an investor that rebalances
her portfolio monthly as described in Section 3. Then, we take the average of portfolio
weights over the whole time series. The strategic choice occurs every 2J working days and
we have 2J possible starting dates. Therefore, we take the mean of portfolio weights across
these realizations, too. The outcome is depicted in Figure 6.

We see from the graph that the allocation generally increases (in absolute value) with
the scale and with the relative risk aversion. The highest loadings are associated with the
(J+1)-th asset, which collects the sensitivity to shocks with any persistence higher than J .
The investment in the J-th security is the one to be negative for almost all degrees of risk
aversion. Hence, the optimal portfolio rule prescribes a relevant short-selling of this asset,
that partly counterbalances the large purchase of the (J+1)-th security. These observations
suggest that the (J + 1)-th asset shares the same interpretation of the optimal growth
portfolio discussed, for instance, by Merton (1969). See also the more recent summary by
Christensen (2012).

If γ = 1 the investor is fully myopic and the weights are similar across scales. When
γ increases, the investment diversifies within persistent assets and the allocation to high
scales becomes prominent.

In order to understand more deeply the dependence of portfolio loadings from persistent
components we consider the entries of the matrix A1 for raising values of risk aversion. For
this analysis we employ the last eighth of the sample. We first plot the optimal portfolio
weights in Figure 7. Observe that the average weights on the two more persistent assets
almost overlap. Then, as an example, we focus on the dependences of the fourth optimal
weight π(4) on each persistent security. Specifically, we depict in Figure 8 the entries (4, j)
of the matrix A1 for j = J + 2, . . . , 2J + 2. This graph, in fact, complements the outcomes
of Figure 7 which refer to the whole πt = A0 +A1zt.

At a first glance, we note that the fourth loading is mostly dependent on the persistent
component at scale 4. This feature is shared also by the other weights (not plotted here),
which are mainly sensitive to the security at the same scale. Nevertheless, when the agent’s
risk aversion raises, the relative importance of this security shrinks visibly. This behaviour
conveys the intuition that a less risk-averse investor bases her valuations on scale-specific
factors, while a more risk-averse trader is likey to include the other components in her
strategy. This phenomenon is consistent with the hedging nature of persistent components
presented in Subsection 4.3.

However, the behaviours of Figure 8 are not always present. For instance, we can set
the IES ψ = 0.5 and solve the asset allocation problem on the whole sample. Results about
mean portfolio weights and the sensitivity of the first loading with respect to the persistent
securities are plotted in Figures 9 and 10 respectively. In this example, the weight on the
first persistent asset equally depends on the risky securities at any scale. Also the other
portfolio weights feature the same property. Indeed, low IES induces smooth consumption
streams and hedging is remarkable at any level of risk aversion.
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Figure 7: Mean optimal portfolio weights π(j) for j = 1, ..., 5 with respect to different
degrees of relative risk aversion γ = 3, . . . , 14 and fixed ψ = 0.99. Here the last eighth of
the sample is employed.
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Figure 8: Dependence of the fourth (mean) optimal portfolio weight π(4) from each persis-
tent asset with respect to different degrees of relative risk aversion γ = 3, . . . , 14 and fixed
ψ = 0.99. Here the last eighth of the sample is employed.
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Figure 9: Mean optimal portfolio weights π(j) for j = 1, ..., 5 with respect to different
degrees of relative risk aversion γ = 4, . . . , 10 and fixed ψ = 0.5.
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Figure 10: Dependence of the first (mean) optimal portfolio weight π(1) from each persis-
tent asset with respect to different degrees of relative risk aversion γ = 4, . . . , 10 and fixed
ψ = 0.5.
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6 Conclusions

This work constitutes a first attempt to formalize strategic asset allocation when shocks
are heterogeneous in terms of duration. The sensitivity of returns to such innovations is
captured by scale-specific components, retrieved by the Extended Wold Decomposition.
When investors are allowed to trade securities whose returns mimic the ones of persistent
components, we provide an approximately optimal way to allocate wealth (and decide, in
turn, consumption). The main contribution is the embedding of persistence-based returns
into the classical multiperiod portfolio optimization framework, which employs peculiar
tools such as autoregressive dynamics and log-linearisation techniques.

The empirical implementation suffers from weak algorithmic stability that, however, is
also present in standard intertemporal multivariate asset allocation. Moreover, an impor-
tant question is the feasibility of the replication of persistent components through traded
securities in the market. This aspect is fundamental to make our results usable by practi-
tioners. We will devote future research to deeply understand and solve these issues.
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A Derivation of portfolio log return approximation

The log return on the portfolio rp,t:t+2J is a discrete-time approximation of its continuous-
time counterpart. In this section we show how to obtain the following approximation

rp,t:t+2J '
ft:t+2J

J + 1
+π′txt:t+2J +2J

{
1

2
π′t
(
σ2
x − Σxπt

)
+

J

J + 1

[
π′tσfx +

1

2

vart
(
ft+2J

)
J + 1

]}
.

We start by assuming the dynamics for the value processes associated with the compo-
nents of risk-free asset (vector Bt) and market portfolio (vector Pt):

dBt

Bt
= µb,tdt+ σbdWt (A.1)

dPt

Pt
= µtdt+ σdWt (A.2)

where µb,t and µt are the drift vectors, σb and σ are the diffusion matrices and Wt is a
J + 1-dimensional standard Brownian motion. We can obtain the corresponding log values
by employing Ito’s Lemma:

d logBj,t =

(
dBj,t
Bj,t

)
− 1

2

(
σbjσ

′
bj

)
dt (A.3)

d logPj,t =

(
dPj,t
Pj,t

)
− 1

2

(
σjσ

′
j

)
dt (A.4)

where σj (σbj) represents the j-th row of the diffusion matrix σ (σb), for j = 1, ..., J + 1.
Let Vt be the portfolio value at time t and denote by ι a vector of J + 1 ones. We have

Vt = π′tPt +

(
1

J + 1
ι′ − π′t

)
Bt

and we set

rp,t:t+2J = d log Vt =
dVt
Vt
− 1

2

(
dVt
Vt

)2

.

In particular,

dVt
Vt

= π′t
dPt

Pt
+

(
1

J + 1
ι′ − π′t

)
dBt

Bt

= π′t

(
d logPt +

1

2

[
σjσ

′
j

]
dt

)
+

(
1

J + 1
ι′ − π′t

)(
d logBt +

1

2

[
σbjσ

′
bj

]
dt

)
= π′t (d logPt − d logBt) +

1

J + 1
ι′d logBt +

1

2
π′t
([
σjσ

′
j

]
−
[
σbjσ

′
bj

])
dt

+
1

2

1

J + 1
ι′
[
σbjσ

′
bj

]
dt,
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where brackets [·] denote a vector with σjσ
′
j (or σbjσ

′
bj) entries. Moreover(

dVt
Vt

)2

= π′t (d logPt − d logBt) (d logPt − d logBt)
′ πt

+
1

J + 1
ι′ (d logBt) (d logBt)

′ 1

J + 1
ι

+2π′t (d logPt − d logBt)

(
1

J + 1
ι′d logBt

)
+ o (dt) ,

where all o (dt) terms vanish because they involve either dt2 or dtdWt. By combining
Equations (A.1)-(A.4), we obtain

d logPt − d logBt = µtdt+ σdWt −
1

2

[
σjσ

′
j

]
dt

−µb,tdt− σbdWt +
1

2

[
σbjσ

′
bj

]
dt

≈ (σ − σb) dWt,

where the last line follows after ignoring dt terms. Then,

(d logPt − d logBt) (d logPt − d logBt)
′ = (σ − σb) (σ − σb)

′ dt,

(d logPt − d logBt)

(
1

J + 1
ι′d logBt

)
= (σ − σb)σ

′
bι

1

J + 1
dt.

Consequently, by employing the notations xt:t+2J =d logPt − d logBt and ft:t+2J =
d logBt and by setting dt = 2J , it follows that

rp,t:t+2J = d log Vt = π′txt+2J +
1

J + 1
ι′ft+2J + 2J

{
1

2
π′t
([
σjσ

′
j

]
−
[
σbjσ

′
bj

])
− 1

2

[
π′t (σ − σb) (σ − σb)

′ πt + 2π′t (σ − σb)σ
′
bι

1

J + 1

]
+

1

2

1

J + 1
ι′
[
σbjσ

′
bj

]
− 1

2

1

J + 1
ι′σbσ

′
bι

1

J + 1

}
.

By using the notation in the VAR, we have

(σ − σb) (σ − σb)
′ = Σx

σbσ
′
b = Σf[

σbjσ
′
bj

]
= σ2

f[
σjσ

′
j

]
= σ2

x + σ2
f + 2σfx

(σ − σb)σ
′
bι = σfx
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and so

rp,t:t+2J '
ft:t+2J

J + 1
+ π′txt:t+2J + 2J
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1

2
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{
1
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.
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